Journal of Organometallic Chemistry, 86 (1975) 335–345 © Elsevier Sequoia S A , Lausanne – Printed in The Netherlands

DIAZIDOKOMPLEXE VON ALUMINIUM UND GALLIUM DES TYPS $[(CH_3)_2M(N_3)_2]^-$ UND IHRE ADDUKTE MIT TRIMETHYLALUMINIUM, TRIMETHYLGALLIUM UND DIMETHYLMAGNESIUM

KURT DEHNICKE und NORBERT RÖDER Fachbereich Chemie der Philipps Universität Marburg/Lahn (Deutschland) (Eingegangen den 12. August 1974)

Summary

Preparation, some properties and the vibrational spectra of dimethyldiazido-aluminates and -gallates $[Me_2M(N_3)_2]^-$ and their addition products with Me_3Al , Me_3Ga and Me_2Mg are described.

Zusammenfassung

Darstellung, einige Eigenschaften und die Schwingungsspektren der Dimethyl-diazido-aluminate und -gallate $[Me_2M(N_3)_2]^{-1}$ und ihrer Addukte mit Me_3Al, Me_3Ga und Me_2Mg werden beschrieben.

Die Kenntnis stabiler Komplexe des Azidions mit metallorganischen Akzeptormolekülen von Aluminium und Gallium, denen die schwingungsspektroskopisch [1, 2] und z.T. kristallographisch [3] gesicherten Strukturen I und II zukommen, veranlasste uns, auch die Darstellung von Diazidokomplexen des Typs $[(CH_3)_2 M(N_3)_2]^-$ zu versuchen. Es erschien zudem die Frage von Interesse, ob und in welchem Ausmass die Azidogruppen dieser Komplexe als Elektronendonatoren zu weiteren Reaktionen mit geeigneten Elektronenmangelverbindungen befähigt sind.

I. Diazodokomplexe

Wir erhielten die Dimethyl-diazidometall-Komplexe von Aluminium und Gallium gemäss Reaktion 1 durch Schmelzen der trimeren Dimethylmetallazide [4, 5, 6] mit Tetramethylammoniumazid.

$$[Me_2MN_3]_3 + 3NMe_4N_3 \rightarrow 3NMe_4[Me_2M(N_3)_2]$$
(1)

Zur Darstellung der Galliumverbindung empfiehlt es sich, zur Förderung des Reaktionsablaufes Toluol zuzusetzen. Die Diazidokomplexe bilden glasartig erstarrende Präparate [Fp $\sim 50^{\circ}$ C], die weder beim Erhitzen noch bei mechanischer Beanspruchung Explosionseigenschaften aufweisen. Dagegen sind die Komplexe gegen Feuchtigkeit und Luftsauerstoff extrem empfindlich. Sie sind thermisch erstaunlich stabil: Bis 230°C konnten wir keine Zersetzungsreaktionen beobachten.

II. Addukte der Diazidokomplexe

Sowohl das Dimethyl-diazidoaluminat als auch das Dimethyl-diazidogallat sind befähigt, mit überschüssigem Trimethylaluminium bzw. Trimethylgallium unter Adduktbildung zu reagieren, wobei sich auch die gemischten Typen isolieren lassen (Gl. 2a und 2b):

$$[Me_2M(N_3)_2]^- + [Me_3A1]_2 \rightarrow [Me_2M(N_3)_2(A1Me_3)_2]^-$$
(2a)
[Me_2M(N_3)_2]^- + 2Me_3Ga \rightarrow [Me_2M(N_3)_2(GaMe_3)_2]^-
(M = A1, Ga)

Durch thermischen Abbau dieser Addukte im Hochvakuum lassen sich bei Dimethyl-diazidoaluminat die Addukte mit Me₃Al und Me₃Ga im Molverhältnis 1/1 erhalten (Gl. 3).

$$[Me_2 Al(N_3)_2 (MMe_3)_2]^- \rightarrow [Me_2 Al(N_3)_2 MMe_3]^- + Me_3 M \quad (M = Al, Ga)$$
 (3)

Gemäss Gl. 4 ist durch Einwirkung einer ätherischen Lösung von Dimethylmagnesium auf Dimethyl-diazidoaluminat ein Addukt im Molverhaltnis 1/1 zugänglich.

$$[Me_2Al(N_3)_2]^{-} + Me_2Mg \rightarrow [Me_2Al(N_3)_2MgMe_2]^{-}$$
(4)

Sämtliche nach den Reaktionen 2-3 erhaltenen Addukte stellen weisse, sauerstoff- und wasserdampfempfindliche, niedrigschmelzende Festkörper dar. Demgegenüber lässt sich für das Me₂ Mg-Addukt kein Schmelzpunkt beobachten.

Aufgrund der Schwingungsspektren (s. Abschnitt III) sowie unter Berücksichtigung des strukturellen Verhaltens der Azidogruppe in zahlreichen metallorganischen Komplexen, wonach eine Donatorfunktion der N_3 -Gruppe ausschliesslich mittels des α -N-Atoms erfolgt [1-9], lassen sich für die hier dargestellten Addukte die plausiblen Strukturvorschläge I-III erstellen.

Der Strukturvorschlag III bedingt für die Aluminiumatome des komplexen Anions $[Me_2Al(N_3)_2AlMe_3]^-$ trigonal-bipyramidale Umgebung mit den α -N-Atomen der Azidogruppe in axialer und äquatorialer Position. Die Assoziation des polymeren Anions käme dann über eine mehr oder weniger gestreckte

Al—CH₃—Al-Brücke zustande, wie sie für Al—F—Al-Brücken in verschiedenen Varianten bekannt ist [10, 11]. Eine solche Art der Assoziation ist die einzige, die für die Komplexeinheit [Me₂Al(N₃)₂AlMe₃]⁻ eine hohe Pseudosymmetrie (C'_{2h}) zulässt, wie sie aus schwingungsspektroskopischen Daten gefolgert werden kann. Für fünffach koordinierte Aluminiumatome sind nur wenige Beispiele bekannt; zu erwähnen sind H₃Al[N(CH₃)₃]₂ [12], H₃Al[N(n-C₃H₇)₃]₂ [13] und [(CH₃)₂Si]₄Al₃Br₅O₆ [14]. In dieser Verbindung sind zwei der drei Al-Atome tetraedrisch, das dritte durch vier O-Atome und ein Br-Atom fünffach koordiniert. Über verschiedene, mittels CH₃-Gruppen mehrzentrenverbrückter Pseudohalogenokomplexe von Methyllithium, Diäthylberyllium und Dimethylmagnesium konnten wir kürzlich berichten [9].

Weniger wahrscheinlich ist der Strukturtyp III für den Komplex $[Me_2 - Al(N_3)_2GaMe_3]^-$, da Gallium keine Neigung zur Ausbildung von Mehrzentrenelektronenmangelverbindungen besitzt. Möglicherweise bildet aber das Ga-Atom dieses Komplexes die Koordinationszahl 5 aus, indem es mit beiden α -N-Atomen der Azidogruppen koordiniert. Eine schwingungsspektroskopische Entscheidung ist jedoch wegen der geringen Symmetrie des Komplexes nicht möglich.

III. Schwingungsspektren

A. Diazidokomplexe $[Me_2M(N_3)_2]^-$ (M = Al, Ga)

Tabelle 1 enthält die Schwingungsfrequenzen der beiden Diazidokomplexe mit den Zuordnungsvorschlägen. Als spektroskopische Vergleichsverbindungen dienten die Schwingungsspektren von Dimethylaluminium- und Dimethylgalliumazid [5, 6], der Trimethylazidokomplexe [Me₃MN₃]⁻ von Aluminium und Gallium [1, 2], die Spektren der zu den Komplexen [Me₂M(N₃)₂]⁻ isoelektronischen Moleküle Me₂Si(N₃)₂ [15] und Me₂Ge(N₃)₂ [16], die allerdings nur unvollständig bekannt sind, sowie das IR-Spektrum des ebenfalls mit [Me₂Al(N₃)₂]⁻ isoelektronischen Dimethyl-diazidophosphoniumkations [Me₂P(N₃)₂]⁺ [17]. Die Schwingungen des Tetramethylammoniumkations weisen keine Besonderheiten auf; sie lassen sich in Anlehnung an das Spektrum von NMe₄J zuordnen [18].

TABELLE I

SCHWINGUNGSSPEKTREN (cm⁻¹, Intensität^a) VON [Me₄N] [Me₂Al(N₃)₂] UND [Me₄N] - $[Me_2Ga(N_3)_2]$

[Me4N] [Me2	AI(N3)2]	[Me4N][Me2	$Ga(N_3)_2$]	_
IR	Raman	IR	Raman	Zuordnung
3440 m-st		3380 st		$v_{as}(N_{3}) + v_{s}(N_{3})$
3040 m-st	3038 s	3040 st	3038 m	"(CH3)[Me4N*]
	2980 s		2981 m	
		2962 st	2959 m	
2930 st	2926 m	2924 st	2920 m	(CH3)
2896 st	2894 m			}
2824 m-st	2822 s		2810 ss	2 X δ ₃₅ (CH ₃)
2581 ss		2593 ss		-
2481 ss		2492 ss		
2358 ss		2365 ss		
2122 sst	2113 s	2091 sst	2972 ss	
2093 sst	2088 s	2062 sst	2059 ss	$\int v_{as}(N_3)$
1488 st		1488 st		δ _{as} (CH ₃)[Me ₄ N ⁺]
1451 m-st	1449 m	1454 m-st	1450 m	
1420 m-st	1418 ss	1420 m-st	1405 s	o _{as} (CH ₃)
1367 st	1359 m	1346 st	1340 m	ν _s (N ₃)
1290 (Sch)	1282 ss	1295 st	1291 s	$\nu_{\rm s}({\rm N}_3)$
1187 st	1183 տ	1200 st	1195 m-st	$\delta_{s}(CH_{3})[Me_{4}N^{+}]$
		1086 ss		-
1056 s		1070 ss		
		1031 ss		
950 st	947 m-st	951 sst	942 m-st	$\nu_{as}(NC_4)$
	749 st		749 st	$v_{c}(NC_{4})$
714 (Sch)		737 st		
		701 s		^γ ρ(CH ₃)
675 st	674 ss			$\rho(CH_3), \nu_{as}(A C_2), \delta(N_3)$
		662 m-st		δ(N3)
608 m-st		614 m		γ(N3)
		589 st	580 m	$v_{as}(GaC_2)$
575 st	572 m-st			$v_{s}(A C_{2})$
		544 st	540 sst	$v_{s}(GaC_{2})$
513 m		473 ss		
		460 s	451 m	δ _s (NC ₄)
457 (Scb)				$\nu_{\rm s}(\rm AIN_2)$
441 m-st	439 sst			$v_{as}(AlN_2), \delta_s(NC_4)$
		381 sst	371 st	$v_{s}(GaN_{2})$
	368 ss			
		349 sst		$v_{as}(GaN_2)$

^a sst, schr stark; st, stark; m, mittel; s, schwach, ss, schr schwach; (Sch), Schulter.

Für die Komplexe $[Me_2 M(N_3)_2]^-$ kommt als höchstmögliche Symmetrie die Punktgruppe $C_{2\nu}$ in Betracht, für die mit Ausnahme der nur Raman-aktiven Schwingungen der Rasse A_2 , die zudem erfahrungsgemäss nur sehr geringe Intensität haben, kein Alternativverbot gilt. Von den Valenzschwingungen interessieren besonders die der N₃-Gruppen; ihre Lage und die Beobachtbarkeit der symmetrischen N₃-Valenzschwingungen im IR-Spektrum kennzeichnet sie als homöopolar gebundene Gruppen. In der Reihe der isoelektronischen Spezies $[Me_2M(N_3)_2]^n$ (n = -1, 0, +1) der Elemente M = AJ, Si, P bzw. M = Ga, Ge (die entsprechende Arsenverbindung ist nicht bekannt), wird $\nu_{as}(N_3)$ schrittw-ise kurzwellig, entsprechend $\nu_s(N_3)$ langwellig verschoben (Tabelle 2). Dieses Ver-

TABELLE 2

_ _ _ _ _ _

[Me2AI(N3)2 [Me2Si(N3)2 [15]	[Me2P(N3)2] ⁺ [17]	[Me2Ga(N3)2] ⁻	[Me ₂ Ge(N ₃) ₂] [16]
$v_{as}(N_3)$	2122, 2093	2150	2190, 2165	2091, 2062	2110
"s(N3)	1367. 1290		1278, 1258	1346, 1295	1282

halten entspricht einer Verschiebung des Resonanzhaushalts der Azidogruppe von (a) nach (b). Bezüglich der Frequenzlage der Al-N-Valenzschwingung (mit asymmetrischem Charakter) ergeben sich gegenüber anderen Azidokomplexen des Aluminiums vergleichbare Verhältnisse (Tabelle 3).Somit lassen sich die Al-N-Bindungen auch in dem Diazidokomplex im wesentlichen als Einfachbindungen beschreiben. Analoge Verhältnisse ergeben sich bei entsprechenden Vergleichen bei den Galliumverbindungen [2]. Vergleicht man hingegen die Frequenzlagen der Al-C-Valenzschwingungen der in Tabelle 3 zusammengestellten Komplexe, so ergibt sich, dass nur bei den Trimethylaluminiumaddukten eine Lockerung der Al-C-Bindungen als Folge der negativen Ladungen der Komplexe zu beobachten ist, während der Einfluss der negativen Ladung auf die Lage der AlC₂-Valenzschwingungen im $[Me_2Al(N_3)_2]^{-}$ im Vergleich zum $[Me_2AlN_3]_3$ [5] nicht nennenswert ist.

B. Addukte der Diazidokomplexe mit Me_3Al , Me_3Ga und Me_2Mg

Die Tabellen 4 und 5 enthalten die gemessenen Schwingungsfrequenzen mit den Zuordnungsvorschlägen. Zusätzlich zu den unter III.A. genannten Spektren wurden zum spektroskopischen Vergleich noch die Schwingungsspektren von [Me₃AI]₂ [19], Me₃Ga [20, 21] und [Me₂Mg]_{∞} [22] herangezogen sowie die Erfahrungen aus den Spektren des Dimethylmagnesiums mit verschiedenen Elektronendonatoren genutzt [9]. Danach ergibt sich insgesamt folgendes Bild: Die mittlere Lage von $\nu_{as}(N_3)$ wird nur durch die Addition von Me₃Al und Me₂Mg deutlich kurzwellig verschoben, was einer Begünstigung der Diazoniumstruktur (b) der Azidogruppe entspricht und wohl eine Folge der Adduktbildung am α -N-Atom der Azidogruppe mit entsprechender Verstärkung (Fortsetzung s. S. 342)

TABELLE 3

VERGLEICH CHARAKTERISTISCHER SCHWINGUNGEN EINIGER AZIDOKOMPLEXE

		[Me2AlN3]3	[Me3AlN3AlMe3]" [Me3AlN3]"	[Me2Al(N3)2]
ν(AlN)	(cm ⁻¹)	580	424	420	441
$\nu_{as}(A C_n)$	(cm ⁻¹)	682	620	609	675
vs(AICn)	(cm ⁻¹)	580	519	513	575

SCHWINGU [Mazal(N ₃))2MgMo2) (M	= N (cm ⁻¹ , Int = Al, Ga)	onsitat) URIC	AZIDOKOMI	LEXE [Me4N	[[Me2A!(N3	.[2(E9MM)2([MeqN] [Me2	NI(N2)2MMe3 UND [Me4N].	
[Me4 N] [Mc (A)Me3)2]	- 5(₆ N) A 5	[Mº4N]- [Mº2A](N ₃) ₂ AlMº3]	[Me4N] [M ^e 2 2(GuMe3)2]	Al(N ₃)2-	[Mº4N] [Mº2 GaMº3]	-2(EN)IA	[Me4N] [Me2 MBMe2]	AI(N ₃)2-	Zuordnung	
R	Raman	R	IR	Առուսո	มเ	R aman	1R	Ramun		
3486 s 3377 m 3280 ss		3485 m 3370 m-st 3282 ss	3380 m		3450 55 3364 85		3476 m		(۲, N) ₈ 4 + (۶, N) ₈ 9 (۲, N) ₈ 4 + (۶, N) ₂ 8	
3040 m-st	3040 m	3040 61	30+0 m-st		3040 s 3010 s	3040 55	3020 m-st	~	(Cil ₃)[NMe4](ردil3)	
	2980 m					2981 s		2978 n-5 2961 s		
2030 st 2886 m_st	2930 m 2806 m-4	2930 st	2044 st 2808 si		2034 m-st	2930 59 9 202 55	2000 st	2022 s	(ເ [.] [CI]) ^{ຄ.ຄ.} າ	
2820 m-st	2823 m	2820 st	2860 (Sch)		2820 (Sch)	2828 s	2800 m-st	2810 s		
		2056 69 2608 55					2730 (Sch)	•		
2580 ss		2690 s	2667 s		2665 55					
2008 m		2620 m 2490 m	2481 85			1482 SS				
2426 89		2440 ss 2362 ss	2340 ss							
21 50 ast		59 0707	2160 (Sch)		2160 (Sch)					
	2138 \$	2130 sst	2120 551	2120 85	2120 sst 2102 sst		2168 sst	21 GD AS		
2124 sst			2080 551		2080 (Sch)		2118 sst		5 F 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
1485 st	1446 a	1480 \$51	1488 sst	1461 s	1485 581	14.49 s	1 481 sst	1440 ss	ծ _{նs} (CH ₃)[NMeդ]	
1420 5		1420 st	1420 m-st	1.420 55	1418 s 1403 s		1416 m-st	1390 54		
1379 s	1360 as	1370 m-st	1373 m-st	1385 s 1359 s	1366 \$				¢as(CHJJ)	

} ÷ ! ł t

1 : ;

.

1 1 เพกบอ

TABELLE 4

(2) 22 20 20 20 20 20 20 20 20 20 20 20 20	ر (CH ₃) رودار کار	{}^s(CH_1)[M6]	^{1,} as(NC4)		(clifted)	//////////////////////////////////////	((N))	(دالع)) م ۱/۵٫۱٬۹۰۵ (۱۲۵۵) الم		ν ₅ (ΛΙC ₂)	Phase (GuC3)	P _s (MEC2)	P.s.(GaC3)	ν _s (MgC ₂)		r(Me. AIN)	P(Mc. AIN)		/1.(AIC2)	' (MGAIN)	
	1160 m 1149 m		945 m-s			692 m-s	G38 ss			6-12 s				486. st		418 sci	302 m-s	385 5			
1282 s 1268 (Sch)	12 02 11	1080 m~t 1023 m-st	946 st 918 in	838 m		693 st	1	610 m	655 (Sch)	642 m-st		513 s				an 815				322 m	
	1172 m		045 s		749 m		618 5			576 s	sc 00i		622 st								
	וכיות 1831 1183 m-st		996 55 946 55t			(11) (SCII) 680 sst				575 (Sch)	550 st		616 m-st		-153 (Sch)	-136 st			335 \$>		
	1280 s 1188 st		048 m		749 m					572 55	552 s		518 551			446 5					
	1282 S51 1184 sst		994 su 949 su			735 (Sch) 688 sst	6.9 K s			(1) (Sch)	656 st		520 s	1		-146 st			344 55		200 s
1287 (Sch)	1260 m-st 1184 m-st		1005 s 040 st 013 s			720 st		۳ (L)	11 0 20	577 m			111 770			430 st				30.055	
	1265 m 1172 m-st		945 m		747 st			619 ce	55 O T O	575 m-st		10,003	105 0 70			460 55			315 ss	31.5 23	
	1260 st 1103 (Sch) 1177 st		048 st	790 (Sch)		602 sst		•• 003	טבט זנ	580 m-st			18-111 F20			443 st			340 m-st		

.

[Me4N] [Me20 (AlMe3)2]	Ga(N 3)2-	[Me4N][Me2 (GaMe3)2	Ga(N3)2- }	
IR	Raman	IR	Raman	Zuordnung
3480 s				
3370 m		3350 s		$v_{s}(N_{3}) + v_{as}(N_{3})$
3040 (Sch)	3040 ss	3040 🖬		ν (CH ₃)[Me ₄ N ⁺]
		3014 m		$v(CH_3)[Me_4N^+]$
	2978 ss	2960 st)
2922 st	2920 ss	2910 st	2900 ss	v(CH ₃)
2880 st	2885 s			
2816 m-st	2818 55	2838 m-st		2 Χ δ _{as} (CH ₃)
2501 s				$2 \times \delta_{s}(N_{3})$
			2120 ss	
2122 sst	2120 ss	2080 sst	2080 ss	$\nu_{as}(N_3)$
			2042 ss	
		1745 ss		
			1695 ss	
			1654 ss	
		1600 s	1618 ss	
1485 sst		1488 st		δ _{as} (CH ₃)[Me ₄ N ⁺]
			1449 ss	
1420 s		1420 s		δ _{as} (CH ₃)
		1398 ss	1385 ss	
1331 ss		1348 s	1355 ss	$\nu_{\rm s}(N_3)$
1265 st	1263 s	1283 m-st	1280 ss	$\nu_{s}(N_{3})$
			1225 ss	
	1192 st			
1177 st	1172 s	1202 m-st	1183 ss	δ _s (CH3)[Me4N ⁺]
			1082 ss	
		1010 m-st		
945 st	943 s	948 st	946 ss	$v_{as}(NC_4)$
	742 m		749 m	$\tilde{v}_{s}(NC_{4})$
		734 st		p[Ga(CH3)3]
720 ss		700 (Sch)		ρ[Ga(CH3)2]
692 sst				ρ [Al(CH ₃) ₃] + ν _{as} (AlC ₃)
620 st	620 s			δ(N ₃)
		592 st		$v_{as}(GaC_2) + \delta(N_3)$
580 m-st	575 m			$\nu_{as}(GaC_2) + \nu_s(AlC_3)$
		545 st	540 st	$v_{as}(GaC_3) + v_s(GaC_2)$
523 m-st	518 st			ν _s (GaC ₂)
		458 ss	452 s	δ(NC ₄)
-445 st				$\delta(NC_4), \nu(AIN)$
338 m		355 st		ν(GaN)
		255 ss		
		234 ss		$\delta(GaC_3), (GaC_2)$
		188 ss		1

TABELLE 5

SCHWINGUNGSSPEKTREN VON [Me4N][Me2Ga(N3)2(AIMe3)2] UND [Me4N][Me2Ga(N3)2(GaMe3)2]

des sp^3 -Charakters dieses Donatoratoms darstellt [vergl. Strukturvorschläge I und II]. Damit lassen sich Erfahrungen bestätigen, wie sie auch beim Übergang vom [Me₃AlN₃]⁻ zum [Me₃AlN₃AlMe₃]⁻ beobachtet wurden [1]. Demgegenüber weisen die Addukte der Diazidokomplexe mit Me₃Ga praktisch keine Verschiebungen der N₃-Valenzschwingungen im Vergleich zu den nichtkoordinierten Komplexen [Me₂M(N₃)₂]⁻ auf. Eine befriedigende Erklärung für dieses auffällige Verhalten lässt sich zurzeit nicht geben, zumal beim Übergang vom Trimethylgalliumazidokomplex [Me₃GaN₃]⁻ zum [Me₃GaN₃GaMe₃]⁻ der erwartete Frequenzanstieg (~40 cm⁻¹) beobachtet wird [2]. Dagegen weisen die AlC₃- bzw. GaC₃-Valenzschwingungen nach der Addition die erwartete langwellige Verschiebung vergleichbarer Metall-Kohlenstoff-Valenzschwingungen auf, Für den aus spektroskopischen Werten gefolgerten Strukturvorschlag II des $[Me_2 Al(N_3)_2 MgMe_2]^-$ Komplexes ist u.a. das Fehlen von Schwingungen verbrückender Baugruppen des Typs $Mg(CH_3)_2Mg$ massgeblich gewesen, wie sie im polymeren $[Me_2Mg]_{\infty}$ selbst [22] und in verschiedenen Donator-Akzeptorkomplexen des Dimethylmagnesiums angetroffen werden [9]. Ein gewichtiges Argument für die von uns ausschliesslich vorgeschlagenen Additionen der Lewis-Säuren Me₃Al, Me₃Ga und Me₂Mg an den α -N-Atomen der Azidogruppen sind die grossen Intensitäten der symmetrischen N₃-Valenzschwingungen. Bei einer denkbaren γ -Addition an den Azidogruppen wäre zwar die symmetrische N₃-Valenzschwingung ebenfalls IR-aktiv, doch sollte man in diesem Fall nur sehr geringe Intensität für $\nu_s(N_3)$ erwarten. Mit einer entsprechenden Argumentation hatten wir früher aus schwingungsspektroskopischen Daten die Struktur von $[Me_3AIN_3AIMe_3]^-$ vorgeschlagen [1], die sich kristallographisch bestätigen liess [3].

Die für $[Me_2Al(N_3)_2AlMe_3]^-$ vorgeschlagene Wechselwirkung über CH₃-Brücken (Typ III), die zu einer pseudo-zentrosymmetrischen Struktur führt, ergibt sich insbesondere aus dem jeweils nur einfachen Auftreten von $\nu_{as}(N_3)$ und $\nu_s(N_3)$ im IR-Spektrum, die sich somit als von der Theorie zu fordernde Gegentaktvalenzschwingungen beschreiben lassen, sowie aus dem Fehlen einer starken Bande nahe 340 cm⁻¹, die im Komplex $[Me_2Al(N_3)_2(AlMe_3)_2]^-$ vorhanden ist und als $\nu_s(AlN_2)$ gedeutet werden kann. Aus Symmetriegründen ist neben der Al_2N_2 -Ringschwingung des $[Me_2Al(N_3)_2AlMe_3]^-$ bei 430 cm⁻¹ keine weitere Ringvalenzschwingung im IR-Effekt erlaubt. Eine weitere wichtige Stütze für die vorgeschlagene pseudo-zentrosymmetrische Struktur III ist das Auftreten einer Kombinationsschwingung aus $\nu_{as}(N_3)$ und $\nu_s(N_3)$ bei 3485 cm⁻¹, deren Grundschwingungen aus Symmetriegründen (Gleichtaktschwingungen) im IR-Spektrum nicht aktiv sind. Naturgemäss lassen sich über die möglichen Bindungswinkel der Al-CH₃-Al-Brücken keinerlei Aussagen machen.

Experimentelles

Sämtliche Arbeiten wurden unter Reinststickstoff ausgeführt.

Für die Raman-Spektren benutzten wir das Gerät Cary 83 mit Laser-Anregung (5145 Å). Zur Aufnahme der IR-Spektren stand das Perkin-Elmer-Gerät 457 zur Verfügung, Nujolverreibung, CsJ-Scheiben. Die angewandte Präparier-Technik für die IR-Spektren ist an anderer Stelle ausführlich beschrieben [23].

Zur Darstellung von $[Me_4N]N_3$ vergl. Lit. [1]. Während Trimethylaluminium als handelsübliches Präparat benutzt und durch Umkondensieren gereinigt wurde, erhielten wir Trimethylgallium durch Umsetzung von Gallium mit Dimethylquecksilber [24] und eine ätherische Lösung von Dimethylmagnesium entsprechend aus Magnesium und Dimethylquecksilber [25].

Die Darstellung der komplexen Azide 1-9, deren analytische Daten in Tabelle 6 zusammengestellt sind, lässt sich exemplarisch beschreiben: Zur Darstellung der Komplexe 1 und 2 kondensiert man in einer geschlossenen Vakuumapparatur auf feingepulvertes $[Me_4N]N_3$, das man zuvor im Vakuum nachgetrocknet hat, unter Kühlung mit flüssigem Stickstoff einen etwa 10%-

TABELLE 6 ANALYTISCHE DATEN

	Gef.	(Ber.) (%)		Reakt	Schmelz-	
	c	н	N	(°C)	(°C)	
1	[Me4N] [Me2Al(N3)2] 32.4	8.2	-43.6	70	50	
	(33.5) (8.4)	(45.5)			
2	$[Me_4N][Me_2Ga(N_3)_2]$ 28.2	6.8	37.8	20	50	
	(28.0) (7.0)	(38.1)			
3	$[Me_4N][Me_2AI(N_3)_2(AIMe_3)_2] 39.3$	9.6	26.9	20	50	
	(40.2	(10.0)	(27.3)			
4	$[Me_4N][Me_2Al(N_3)_2AlMe_3] 37.0$	9.1	32.7	100	90	
	(37.8	(9.5)	(34.2)			
5	$[Me_4N][Me_2Al(N_3)_2(GaMe_3)_3] 31.9$	8.2	21.2	20	a	
	(32.4	(8.1)	(* 2.0)			
6	{Me ₄ N} [Me ₂ Al(N ₃) ₂ GaMe ₃] 31.7	8.1	28.7	90	80	
	(32.8	(8.2)	(29.8)			
7	[Me4N] [Me2Al(N3)2MgMe2] 34.1	8.8	37.1	20	Ь	
	(35.7) (9.0)	(36.4)			
8	[Me4N] [Me2Ga(N3)2(ALMe3)2] 36.3	9.1	24.7	20	60	
	(36.0)) (9.0)	(24.4)			
Э	[Me4N] [Me2Ga(N3)2(GaMe3)2] 29.3	6.9	19.5	20	a	
	(29.5) (7.4)	(20.1)			

^a Bei Zimmertemperatur flüssig. ^b Es konnte kein Schmelzpunkt beobachtet werden.

igen Überschuss $[Me_2AIN_3]_3$ [5] bzw. $[Me_2GaN_3]_3$ [6]. Man lässt auf Zimmertemperatur anwärmen und rührt die Ansätze etwa 1-2 Stunden bzw. erwärmt sie gleichzeitig auf die in Tabelle 5 angegebenen Reaktionstemperaturen. Zur Darstellung von 2 muss man zur Beförderung der Reaktion einige ml Toluol zugeben. Nach beendeter Umsetzung destilliert man bei höchstens Reaktionstemperatur überschüssiges Reagens im Hochvakuum ab. In entsprechender Weise verfährt man bei der Herstellung der Präparate 3-6 und 8, 9, während die Präparierung von 7 durch Auftropfen überschüssiger ätherischer Lösung von Dimethylmagnesium auf $[Me_4N][Me_2Al(N_3)_2]$ und anschliessendem Filtrieren des feinpulvrigen Addukts mit Ather erfolgt. Die Ausbeuten entsprechen in allen Fällen praktisch der Theorie.

Dank

Herrn Dr. Robert Schmitt sind wir für die Aufnahme der Raman-Spektren zu Dank verpflichtet. Der Fonds der Deutschen Chemischen Industrie unterstützte diese Arbeiten in dankenswerter Weise.

Literatur

- 1 F. Weller und K. Dehnicke, J. Organometal. Chem., 35 (1972) 327.
- 2 K. Dehnicke und J.L. Wilson, J. Chem. Soc., Dalton, (1973) 1428.
- 3 J.L. Atwood and W.R. Newberry III., J. Organometal. Chem., 65 (1974) 145.
- 4 N. Wiberg, W.Ch. Joo und H. Henke, Inorg. Nucl. Chem. Lett., 3 (1967) 267.
- 5 J. Müller und K. Dehnicke, J. Organometal. Chem., 12 (1968) 37.

⁶ N. Röder und K. Dehnicke, Chimia, 28 (1974) 349.

- 7 J. Muller und K. Dehnicke, Z. Anorg. Allg. Chem., 348 (1966) 261.
- 8 J. Müller und K. Dehnicke, J. Organometal. Chem., 7 (1967) P1.
- 9 A. Klopsch und K. Dehnicke, Chem. Ber., im Druck.
- 10 G. Allegra und G. Perego, Acta Crystallogr., 16 (1963) 185.
- 11 G. Gundersen, T. Hangen und A. Haaland, J. Organometal. Chem., 54 (1973) 77.
- 12 C.W. Heitsch, C.E. Nordman und R.W. Parry, Inorg. Chem., 2 (1963) 508.
- 13 J.U. Ruff und M.F. Hawthorne, J. Amer. Chem. Soc., 83 (1961) 535.
- 14 M. Bonamico, Chem. Commun., (1965) 135.
- 15 E. Ettenhuber und K. Rühlmann, Chem. Ber., 101 (1968) 743.
- 16 I. Ruidisch und M. Schmidt, J. Organometal. Chem., 1 (1964) 493.
- 17 A. Schmidt, Chem. Ber., 103 (1970) 3923.
- 18 G.L. Bottger und A.L. Geddes, Spectrochim. Acta, 21 (1965) 1701.
- 19 E.G. Hoffmann, Ber. Bunsenges. Phys. Chem., 64 (1960) 616.
- 20 J.R. Hall, L.A. Woodward und E.A.V. Ebsworth, Spectrochim. Acta, 20 (1964) 1249.
- 21 G.E. Coates und A.J. Downs, J. Chem. Soc., (1964) 3353.
- 22 P. Krohmer und J. Goubeau, Z. Anorg. Allg. Chem., 369 (1969) 238.
- 23 V, Krieg und J. Weidlein, Z. Anorg. Allg. Chem., 368 (1969) 44.
- 24 G.E. Coates, J. Chem. Soc., (1951) 2003.
- 25 J. Laemmle, E.C. Ashby und H.M. Neumann, J. Amer. Chem. Soc., 93 (1971) 5120.